
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr

URL: http:/
Journal of Sound and Vibration 315 (2008) 414–432

www.elsevier.com/locate/jsvi
Second-order solutions for the dynamics of a semi-infinite
cable on a unilateral substrate

Lucio Demeioa,�, Stefano Lencib
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Abstract

We present an asymptotic solution of a moving-boundary problem which describes the nonlinear oscillations of semi-

infinite cables resting on an elastic substrate reacting in compression only, and subjected to a constant distributed load and

to a small harmonic displacement applied to the finite boundary. Our solution is correct through the second-order terms in

a smallness parameter, which we identify with the amplitude of the harmonic oscillation at the boundary, and it

complements the first-order solution presented in an earlier work. The second-order analysis confirms the existence of two

different regimes in the behaviour of the system, one below (called subcritical) and one above (called supercritical) a certain

critical (cutoff) excitation frequency. In the latter, energy is lost by radiation at infinity, while in the former this

phenomenon does not occur and various resonances are observed instead. We show that these two regimes exist at all

orders in the expansion parameter, and that the cutoff frequency decreases at each order. We also perform a limited

comparison of our asymptotic results with a numerical solution. The two approaches show very good agreement.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In this work, we continue our investigations [1–3] of a moving-boundary problem for the wave equation,
which arises, e.g., in the modeling of the J-lay technique [1] for marine pipelines or cables, or in marine
moorings [4]. The mechanical system under consideration consists of a semi-infinite cable resting on a
(unilateral) elastic substrate reacting in compression only, subjected to a constant distributed load and to a
harmonic displacement applied to the finite boundary, which induces nonlinear forced oscillations. With
regard to the J-lay problem, this model describes only the laid part and the first part of the suspended span,
which are divided by the so-called Touch-Down Point (TDP) (Fig. 1). Since the position of the TDP is an
additional unknown, which depends upon the solution itself, the resulting dynamics is governed by a nonlinear
moving-boundary problem [5].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. A schematic picture of the considered mechanical systems.
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The statics of continuous systems (cables, beams, plates), both of finite [6] and infinite [7] length and
subjected to unilateral constraints, has been deeply investigated, both analytically [8] and numerically [9]. Also
the dynamics of various continuous structures with bilateral nonlinear terms has been investigated in the past,
both for finite [10] and infinite [11] domains, especially in the case of moving loads [12].

On the contrary, much less attention has been paid to the dynamics of continuous systems with unilateral

distributed constraints, in particular to the case of cables on unilateral substrates, which is considered in this
work. Analytical solutions for the motion of finite length beams on unilateral elastic springs have been
obtained by Weitsman [13], while numerical solutions of the same problem have been obtained by Celep et al.
[14]. The response of a finite beam on a tensionless Pasternak foundation subjected to a harmonic load was
studied by Coks-un [15], who also considered the case of Winkler nonlinear soil [16]. The free and forced
dynamics of a finite beam on a rigid and curved unilateral constraint has been investigated in Ref. [17].
Toscano [18] obtained some theoretical results but did not provide analytical solutions for the governing
equations.

In Ref. [3] analytical and numerical solutions for a semi-infinite beam on a unilateral Winkler soil have been
obtained and compared with each other. A steadily moving load acting on an infinite beam on a unilateral
Winkler soil, a problem for railtracks, has been investigated by Choros and Adams [19]. Still in the framework
of railway engineering, Metrikine [20] studied the pantograph–power line dynamical interaction by
considering an infinite cable on a unilateral nonlinear soil under moving loads. He obtained a very elegant
analytical solution; the substrate is modeled as an elastic half-space by Adams [21]. In Ref. [2] analytical
solutions were obtained by the asymptotic method for semi-infinite cables and beams with unilateral
elastic springs.

Although in the statical regime exact solutions can be found, even for large displacements (see, e.g.,
Ref. [22]), in the dynamical regime an exact, analytical solution of the nonlinear model equations is
unattainable even for small displacements; therefore, we resort to an approximate solution by using
asymptotic analysis [23,24]. The first-order solution was presented in Ref. [2], and in this paper we present the
second-order solution, which is necessary to achieve better understanding of the nonlinear dynamics. In fact,
the second-order terms are the first ones which are influenced by the nonlinearities of the problem.

In our perturbation expansion, the zero-order terms correspond to the static solution obtained in the
absence of a time-dependent excitation applied at the boundary. The first-order terms permit to understand
the primary resonance behaviour and the questions related to the wave propagation towards infinity [25,26].
In particular, these terms permit to identify two different regimes, below and above a certain critical (cutoff)
excitation frequency, with very different wave properties [25]. These two regimes are present at all orders of the
perturbative solution; here we analyse in detail the second-order behaviour, and infer from it the behaviour at
higher-order terms. In particular, we show how the higher-order cutoff frequencies are related to the first-
order one, a result which is not detectable by the first-order analysis.

From our asymptotic solution, we obtain the behaviour of the vertical displacement profiles as function of
time and of the amplification factor D, which will be defined in Section 3.1 as the ratio between the amplitude
of the oscillations of the TDP and the amplitude of the forcing oscillation imposed at the finite boundary. We
use this synthetic parameter to show the main characteristics of the solution behaviour at various orders. In
particular, from the dependence of D from the external frequency o we detect all primary and secondary
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resonances. The presence of the secondary resonances and their relationships with the primary resonances are
both due to the nonlinearity, and can be detected only by the second-order analysis.

This paper is organized as follows: in Section 2 we introduce the mathematical model; in Section 3 the
perturbative expansion solution is obtained. In Section 4 we report the second-order solution of the governing
equations, which are the main results of this paper; in Section 5 we present some comparisons with numerical
results, and in Section 6 we state our conclusions.

2. The mathematical model and changes of coordinates

The profile of the cable is represented by the function uðx; tÞ, where 0pxoþ1 is the space variable and
tX0 the time. A constant downward load acts on the whole cable, while a restoring elastic force is present only
on the portion of the spatial domain where the solution uðx; tÞ is negative. This describes the action of the
elastic substrate that acts in compression only (e.g., a Winkler soil), and represents the unique source of
nonlinearity in the model (Fig. 1).

We assume that there exists only one point of the domain, x ¼ cðtÞ, called Touch-Down Point, where the
profile function vanishes, namely uðcðtÞ; tÞ ¼ 0; in particular, we suppose that uðx; tÞ40 for 0pxocðtÞ and
uðx; tÞo0 for cðtÞoxo1. This hypothesis is supported by the following consideration. When only a positive
static displacement is applied at the finite boundary, the static configuration clearly has only one TDP [2] and,
if the superimposed dynamic excitation is small enough, as assumed in this work, the TDP remains unique.

The static solution uðx; tÞ � uSðxÞ plays an important role. In this case, cðtÞ � c0 is a constant. In this work,
we shall look for time-dependent solutions of the boundary-value problem that correspond to small
oscillations around the static solution. These oscillations are induced by a harmonic displacement applied at
the x ¼ 0 boundary. The TDP x ¼ cðtÞ then exhibits an oscillating behaviour as well, which we describe in
short by means of its ratio with the oscillation amplitude of the boundary (see Section 3.1).

The dimensionless governing equations are given by [2]

q2u
qt2
�

q2u

qx2
þ 1 ¼ 0; 0oxocðtÞ, (1)

q2u

qt2
�

q2u
qx2
þ uþ 1 ¼ 0; x4cðtÞ. (2)

Here, x (the space variable) is measured in terms of v
ffiffiffiffiffiffiffiffi
r=g

p
, t (the time variable) is measured in units of

ffiffiffiffiffiffiffiffi
r=g

p
and u (the cable vertical displacement, positive in the upper direction) in units of p=g, where g is the elastic
constant of the springs, v ¼

ffiffiffiffiffiffiffiffiffi
T=r

p
the propagation speed, T the constant traction in the cable, r the mass

linear density and p is the uniformly distributed static load, which represents, for example, the cable self-
weight.

In fact, the dimensionless x variable defined in Ref. [2] differs by a factor
ffiffiffi
2
p

with respect to the one
introduced here, which brings in an extra factor in some of the terms of the equations. This factor is however
inessential. The constant term þ1 represents the external constant load applied to the system.

The boundary condition at x ¼ 0 is

uð0; tÞ ¼ U0½1þ e sinðotÞ�, (3)

while we require that uðx; tÞ be bounded as x!1; moreover, we assume that, whenever the equations
support sustained traveling-wave solutions, terms corresponding to waves returning from þ1 are not present,
so that only ‘‘outgoing’’ waves (traveling to the right) are admitted [25,26]. Finally, the additional continuity
conditions at x ¼ c are

uðc�; tÞ ¼ uðcþ; tÞ ¼ 0, (4)

qu

qx
ðc�; tÞ ¼

qu

qx
ðcþ; tÞ, (5)

where c ¼ c0 for static solutions and c ¼ cðtÞ for time-dependent solutions.



ARTICLE IN PRESS
L. Demeio, S. Lenci / Journal of Sound and Vibration 315 (2008) 414–432 417
The static solution, uSðxÞ, is obtained by switching off the time derivatives in Eqs. (1) and (2) and setting
e ¼ 0 in the boundary condition (3). We will discuss it in the next section; here, we only anticipate the
expression for the static TDP c0, which is an important parameter in our analysis and is given by [2]

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2U0

p
� 1. (6)

This expression shows that there is a one-to-one correspondence between c0 and U0; for this reason, we will
use either c0 or U0, whichever is more convenient, as a governing parameter in our analysis. The other one is
the excitation frequency o.

It proves convenient to introduce a variable transformation from the original variables ðx; tÞ to a new set of
variables ðz; tÞ, in which the problem becomes either a fixed-boundary problem or a moving-boundary
problem with the moving boundary at the finite end of the whole domain (x ¼ 0 in the original formulation).
A possible transformation which leads to a fixed-boundary problem is given by

z ¼
x

cðtÞ
; t ¼ t, (7)

which was adopted in Ref. [2], where the first-order solution was obtained. The same transformation, however,
was not suited for the second-order analysis, since the second-order terms presented secular behaviour in space
for z!1, which was not easy to eliminate by using well-established techniques [23,24].

In the present work, we adopt a different variable transformation,

z ¼ x� cðtÞ; t ¼ t, (8)

with uðx; tÞ ¼ uðzþ cðtÞ; tÞ ¼ Uðz; tÞ, which leads to a moving-boundary problem with the moving boundary at
the finite end of the domain. In the following, in order to simplify the notation, we will use uðz; tÞ instead of
Uðz; tÞ for the new unknown function. With this transformation, the moving TDP x ¼ cðtÞ becomes z ¼ 0 and
is now fixed, so that uð0; tÞ ¼ 0, while x ¼ 0 and x!1 correspond to z ¼ �cðtÞ and z!1, respectively.
As we shall see, the first-order solution obtained with this variable transformation agrees with the solution
obtained in Ref. [2] and, in addition, no secular terms appear at the second order.

After evaluating all composed derivatives by using the chain rule, we obtain the transformed differential
equations for the new unknown function uðz; tÞ:

q2u
qt2
þ

dc

dt

� �2

� 1

" #
q2u
qz2
� 2

dc

dt

q2u
qt qz
�

d2c

dt2
qu

qz
þ 1 ¼ 0; �cðtÞozo0, (9)

q2u

qt2
þ

dc

dt

� �2

� 1

" #
q2u
qz2
� 2

dc

dt

q2u

qt qz
�

d2c

dt2
qu

qz
þ uþ 1 ¼ 0; z40, (10)

with the boundary conditions

uð�cðtÞ; tÞ ¼ U0½1þ e sinðotÞ�, (11)

uðz; tÞ bounded as z!1, (12)

and the additional continuity conditions

uð0�; tÞ ¼ uð0þ; tÞ ¼ 0, (13)

qu

qz
ð0�; tÞ ¼

qu

qz
ð0þ; tÞ. (14)

3. Perturbative approach

The moving-boundary conditions at the TDP make the problem very hard to approach. However, since we
are interested in motions corresponding to small deviations from the static solution, we approach the problem
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by using a perturbative expansion [23]

uðz; tÞ ¼ u0ðzÞ þ eu1ðz; tÞ þ e2u2ðz; tÞ þ Oðe3Þ, (15)

cðtÞ ¼ c0 þ ec1ðtÞ þ e2c2ðtÞ þ Oðe3Þ. (16)

Note that, according to Eq. (11), the zero-order terms are independent of time and therefore, with this
expansion, the zero-order quantities will be given by the static solution, consistently with our search for
motions near the static profiles. Since we shall look for solutions that correspond to periodic oscillations, we
shall assume that the functions ukðz; tÞ and ckðtÞ, kX1, admit a Fourier expansion of the type

ukðz; tÞ ¼ gk0ðzÞ þ
X1
n¼1

½f knðzÞ sinðnotÞ þ gknðzÞ cosðnotÞ�, (17)

ckðtÞ ¼ bk0 þ
X1
n¼1

½akn sinðnotÞ þ bkn cosðnotÞ�. (18)

Our aim is to determine the coefficients f, g, a, and b of these expansions.
We introduce the perturbative expansion (15) and (16) into the transformed equations (9) and (10) and

obtain the following hierarchy of equations, through second order in e:

Oðe0Þ :
d2u0

dz2
¼ 1; �cðtÞozo0, (19)

d2u0

dz2
� u0 ¼ 1; z40; (20)

Oðe1Þ :
q2u1

qt2
�

q2u1

qz2
¼

d2c1

dt2
du0

dz
; �cðtÞozo0, (21)

q2u1

qt2
�

q2u1

qz2
þ u1 ¼

d2c1

dt2
du0

dz
; z40; (22)

Oðe2Þ :
q2u2

qt2
�

q2u2

qz2
¼ 2

dc1

dt

q2u1

qzqt
þ

d2c1

dt2
qu1

qz

þ
d2c2

dt2
du0

dz
�

dc1

dt

� �2
d2u0

dz2
; �cðtÞozo0, (23)

q2u2

qt2
�

q2u2

qz2
þ u2 ¼ 2

dc1

dt

q2u1

qzqt
þ

d2c1

dt2
qu1

qz

þ
d2c2

dt2
du0

dz
�

dc1

dt

� �2
d2u0

dz2
; z40. (24)

The boundary conditions associated with this hierarchy of equations are

Oðe0Þ : u0ð�c0Þ ¼ U0, (25)

Oðe1Þ : u1ð�c0; tÞ ¼ U0 sinðotÞ þ c1ðtÞ
du0

dz
ð�c0Þ, (26)

Oðe2Þ : u2ð�c0; tÞ ¼ c2ðtÞ
du0

dz
ð�c0Þ þ c1ðtÞ

qu1

qz
ð�c0; tÞ �

1

2
c1ðtÞ

2 d
2u0

dz2
ð�c0Þ, (27)

at the left boundary of the whole domain. Note that this boundary condition is imposed only asymptotically.
At the TDP we have u0ð0Þ ¼ u1ð0; tÞ ¼ u2ð0; tÞ ¼ 0, and the continuity conditions (13) on the function and
Eq. (14) on the derivatives have to hold at all orders.

From Eqs. (21)–(24), we see that the functions u1ðz; tÞ and u2ðz; tÞ obey non-homogeneous differential
equations with the same associated homogeneous equations. As we shall see later on, this fact, which is well
known, has an important consequence on the location of the resonant frequencies of the system.
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Before we proceed further, we make the definition of the amplification factor, which will be used in the
sequel, more precise.

3.1. The amplification factor D

As we mentioned in the Introduction, an important quantity used in this paper and of interest in the
applications is the amplification factor D, which is the ratio of the oscillation amplitude of the TDP to the
boundary oscillation at z ¼ �cðtÞ.

In order to define D in a precise way, we begin by considering the truncated asymptotic expansion of cðtÞ in
series of e:

ecN ðtÞ ¼
XN

n¼0

encnðtÞ. (28)

Next, we define the excursions (or maximum elongations) of the TDP cðtÞ, of its coefficients cnðtÞ and of its
truncated expansions ecN ðtÞ over one period:

GðeÞ ¼
1

2
max

t2½0;2p=o�
cðtÞ � min

t2½0;2p=o�
cðtÞ

� �
, (29)

gn ¼
1

2
max

t2½0;2p=o�
cnðtÞ � min

t2½0;2p=o�
cnðtÞ

� �
, (30)

GN ðeÞ ¼
1

2
max

t2½0;2p=o�
ecNðtÞ � min

t2½0;2p=o�
ecN ðtÞ

� �
. (31)

Then, the function

DðU0;o; eÞ ¼
GðeÞ
eU0

(32)

is the amplification factor; it gives the measure of the amplification with which the oscillation at the boundary
reflects on the oscillation of the TDP. It is easily seen (from Eqs. (16), (29) and (31)) that GðeÞ and GNðeÞ are
proportional to e, and therefore the amplification factor D is of order zero in e.

We would like to obtain first- and second-order asymptotic expressions for the amplification factor. One
possible approach is that of defining the first- and second-order amplification factors from the amplitude of
the oscillations of the expansion coefficients c1ðtÞ and c2ðtÞ:

D01ðU0;oÞ ¼
g1
U0

; D02ðU0;oÞ ¼
g2
U0

, (33)

which leads to amplification factors which are independent of e.
If we consider the definition (32) of the amplification factor and use the truncated expansions (28) for

the TDP cðtÞ, we obtain expressions for the amplification factor which are correct through first or second order
in e:

D1ðU0;o; eÞ ¼
G1ðeÞ
eU0

; D2ðU0;o; eÞ ¼
G2ðeÞ
eU0

. (34)

Among these different amplification factors there exist two important relations:
(i)
 D1 ¼ D01 (so D1 is independent of e):

D1 ¼
1

2eU0
max

t2½0;2p=o�
½c0 þ ec1ðtÞ� � min

t2½0;2p=o�
½c0 þ ec1ðtÞ�

� �
¼

1

2U0
max

t2½0;2p=o�
½c1ðtÞ� � min

t2½0;2p=o�
½c1ðtÞ�

� �
¼

g1
U0
¼ D01.
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D01 þ eD02 provides an upper bound for D2:
(ii)
D2 ¼
1

2eU0
max

t2½0;2p=o�
½c0 þ ec1ðtÞ þ e2c2ðtÞ� � min

t2½0;2p=o�
½c0 þ ec1ðtÞ þ e2c2ðtÞ�

� �
p

1

2U0
max

t2½0;2p=o�
½c1ðtÞ� � min

t2½0;2p=o�
½c1ðtÞ�

�
þ e max

t2½0;2p=o�
½c2ðtÞ� � min

t2½0;2p=o�
½c2ðtÞ�

� ��
¼

g1
U0
þ e

g2
U0
¼ D01 þ eD02.
3.2. Zero-order solution

Eqs. (19) and (20), with the boundary conditions for u0 given in Eq. (25) are easily integrated, giving

u0ðzÞ ¼ z
c0 þ z

2
�

U0

c0

� �
; �c0ozo0, (35)

u0ðzÞ ¼ e�z � 1; z40. (36)

It is easy to see that these two expressions define the same function given by the steady-state equations in the
original variables, provided that the identification x ¼ c0 þ z between the new and the old variables is made,
namely uSðxÞ ¼ u0ðx� c0Þ: The value of c0 is then obtained by using the continuity condition on the derivative,
Eq. (14), and is consistent with Eq. (6).

3.3. First-order solution

The first-order solution was already obtained in Ref. [2] by using the transformation (7). The same results
are obtained (to the first order and up to the different

ffiffiffi
2
p

factor used in the dimensionless variable x) with the
transformation (8). They are summarized here for clarity.

By substituting the expansions (17)–(18) for u1 and c1 in Eqs. (21) and (22), and then equating separately to
zero the coefficient of cosðnotÞ and sinðnotÞ for each n, we obtain an infinite set of equations from which the
expansion coefficients f 1nðzÞ, g1nðzÞ, a1n and b1n are determined. Actually, only f 11ðzÞ, g11ðzÞ, a11 and b11 are
different from zero. The calculations are rather long and we carried them out with a symbolic manipulation
program. We report only the governing equation of f 11ðzÞ,

d2f 11

dz2
þ o2f 11 þ

U0

c0
�

c0

2
� z

� �
o2a11 ¼ 0; zo0, (37)

d2f 11

dz2
þ ðo2 � 1Þf 11 þ o2e�za11 ¼ 0; z40, (38)

which shows that the solutions of Eq. (38) depend crucially upon o [2]: the two linearly independent solutions
of the associated homogeneous equation are hyperbolic if oo1 (‘‘1-subcritical’’ regime) and oscillatory if
o41 (‘‘1-supercritical’’ regime). In the 1-subcritical regime, the boundary conditions that the solution be
bounded as z!1 must be used, while in the 1-supercritical case we must ensure that there are no traveling
waves returning from infinity.

1-Subcritical regime ðoo1Þ: By imposing the non-homogeneous boundary conditions at z ¼ �c0 and by
matching the left and right derivatives at z ¼ 0, we find that f 11 and a11 are the only non-vanishing
contributions to the solution for u1ðz; tÞ and c1ðtÞ; therefore we obtain

u1ðz; tÞ ¼ f 11ðzÞ sinðotÞ, (39)
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c1ðtÞ ¼ a11 sinðotÞ, (40)

where f 11ðzÞ is the solution of Eqs. (37) and (38) with the assigned boundary conditions, and vanishes
exponentially as z!1; the coefficient a11 is then determined by the continuity condition on df 11ðzÞ=dz at
z ¼ 0. We have:

a11 ¼
U0offiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� o2
p

sinðoc0Þ þ o cosðoc0Þ
. (41)

1-Supercritical regime ðo41Þ: In this case both f 11 and g11 are different from zero, and in the range z40 the
solution, which now supports right-traveling waves, can be written in the form

u1ðz; tÞ ¼ a11 sinðot� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � 1
p

Þ þ a12 cosðot� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � 1
p

Þ

þ ~f 11ðzÞ sinðotÞ þ ~g11ðzÞ cosðotÞ, (42)

where ~f 11ðzÞ and ~g1ðzÞ decay exponentially for z!1. In the range �cðtÞozo0 there are also left-traveling
waves, which are due to the reflection at the TDP of the right-traveling waves generated at z ¼ �cðtÞ.
We further have

c1ðtÞ ¼ a11 sinðotÞ þ b11 cosðotÞ, (43)

with a11 and b11 given by

a11 ¼
U0o2 cos oc0ð Þ

o2 � sin2 oc0ð Þ
; b11 ¼

U0o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � 1
p

sin oc0ð Þ

o2 � sin2 oc0ð Þ
. (44)

Note that the presence of the cosine terms means that in this case there is a phase shift between the excitation
and the motion of the cable.

At the first order in e, we have g1 ¼ ja11j in the 1-subcritical case, and g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
11 þ b2

11

q
in the 1-supercritical

case. The first-order amplification factor D01 is therefore given by

D01 ¼
ja11j

U0
¼

o

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� o2
p

sinðoc0Þ þ o cosðoc0Þj
(45)

in the 1-subcritical case and by

D01 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
11 þ b2

11

q
U0

¼
offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2 � sin2ðoc0Þ

q (46)

in the 1-supercritical case. D01ðoÞ is reported in Fig. 2 for three different values of c0. The results show the
presence of (primary) resonances, given by the solutions of

tanðoc0Þ ¼ �
offiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� o2
p (47)

(see Eq. (45)), all lying in the 1-subcritical region, and whose number increases with increasing U0 or c0. In
fact, a resonant-like behaviour is observed also in the 1-supercritical region, although the peaks are not
pronounced and although there are no ideal resonance because the equation o ¼ sinðoc0Þ (see Eq. (46)) has no
solution for o41. This is due to the fact that in the 1-supercritical regime energy is lost by radiation at infinity,
so that the system experiences dissipation, which is responsible for the reduction of the peaks of the resonance
curve, as in classical damped oscillators.

4. Second-order solution

We obtain the second-order solution by substituting the expansions (17) and (18) for u2 and c2 in Eqs. (23)
and (24), and then equating separately to zero the coefficient of cosðnotÞ and sinðnotÞ for each n. The functions
f 2nðzÞ and g2nðzÞ satisfy non-homogeneous second-order differential equations, in which the known term is
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proportional to some of the coefficients a2n and b2n, and are equipped with boundary conditions similar to the
ones of the first-order solution, though slightly more complicated.

For simplicity, we show here only the differential equation governing g22ðzÞ:

d2g22

dz2
ðzÞ þ 4o2g22ðzÞ �

3U0o3 cosðzoÞ cscðoc0Þa11

2

þ 1þ
3

4
2

U0

c0
� c0

� �
o cosðo zþ c0ð ÞÞ cscðoc0Þ

� �
o2a2

11

þ 4U0 � 4z� 2c0ð Þb22 ¼ 0; zo0, (48)

d2g22

dz2
þ ð4o2 � 1Þg22ðzÞ þ

1

2
8b22 þ 1�

3

2
n

� �
a2
11

� �
o2e�z

þ
3

2
n e�z � e�znð Þo2a2

11 ¼ 0; z40, (49)

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jo2 � 1j

p
; (50)

the other coefficients obey differential equations with a similar structure.
We notice that the solutions of Eq. (49) depend crucially upon o: the two linearly independent solutions of

the associated homogeneous equation are hyperbolic if oo1
2 (‘‘2-subcritical’’ regime) and oscillatory if o41

2

(‘‘2-supercritical’’ regime). This shows that the transition between subcritical and supercritical regimes, which
happens at o ¼ 1 in the first-order solution, here occurs at o ¼ 1

2
.

From the previous considerations, we can infer that the threshold frequency between subcritical and
supercritical behaviour is different at different orders of e, and is given by o ¼ 1=n for the n-th order solution.
This is a consequence of the fact that the homogeneous equations associated with the differential equations of
the hierarchy (see Eqs. (21)–(24)) are the same. The result is that for every value of the excitation frequency
there is always an infinite number of traveling waves, which is one of the main consequences of the
nonlinearity of the problem. However, when o is small enough, these waves are of high order and then their
amplitudes are small, and negligible from a practical point of view.

2-Subcritical regime ðoo1
2
Þ: Due to the boundary conditions, we have that the only non-vanishing

contributions to the solution for u2ðz; tÞ and c2ðtÞ are

u2ðz; tÞ ¼ g20ðzÞ þ g22ðzÞ cosð2otÞ, (51)
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c2ðtÞ ¼ b20 þ b22 cosð2otÞ, (52)

where g20ðzÞ and g22ðzÞ are the solutions of differential equations similar to Eqs. (48) and (49) with the assigned
boundary conditions, and decay exponentially as z!1. The coefficients b20 and b22 are then determined by
the continuity condition on the derivatives at z ¼ 0; they are reported in Appendix A.

From expression (A.2) we note that in this range there are secondary resonances, which add to primary
resonances, and which are solutions of

tanð2oc0Þ ¼ �
2offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4o2
p ; (53)

by comparison with Eq. (47), we see that the secondary resonances o2 occur at values of o just one half of the
primary resonances o1. From this result, it is immediate to infer that the resonances of order n are just given
by on ¼ o1=n.

The presence of secondary resonances is the main, non-negligible effect highlighted by the second-order
terms, which is missed by the first-order analysis. However, since the first- and the second-order solutions are
both decaying functions for z!1, we have that, far enough from the secondary resonances, the effects of the
second-order terms are negligible in this range. By anticipating the results of the following sub-section, it is
expected that the third-order terms could be important for 1ooo1

2
, and so on.

2-Supercritical regime ðo41Þ: For these values of o, terms proportional to sinð2otÞ are also present in the
solution; therefore we have

u2ðz; tÞ ¼ g20ðzÞ þ g22ðzÞ cosð2otÞ þ f 22ðzÞ sinð2otÞ, (54)

c2ðtÞ ¼ b20 þ b22 cosð2otÞ þ a22 sinð2otÞ. (55)

In the range z40 the equation supports right-traveling waves and the solution can be expressed in the form

u2ðz; tÞ ¼ a21 sinð2ot� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4o2 � 1
p

Þ þ a22 cosð2ot� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4o2 � 1
p

Þ

þ ~g20ðzÞ þ ~g22ðzÞ cosð2otÞ þ ~f 22ðzÞ sinð2otÞ, (56)

where ~g20ðzÞ, ~g22ðzÞ and
~f 22ðzÞ are functions which decay exponentially as z!1.

From Eqs. (42) and (56) we infer that each wave travels with a different velocity. More precisely, the
propagation velocity of the wave of order n is

vn ¼
offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2 � 1=n2
p , (57)

so that the most important part of the solution (the one which does not decay for z!1) is the superposition
of waves of different speeds.

The expressions of b20, b22 and a22 are reported in Appendix A. With these formulas we draw some
examples of the TDP motion (Fig. 3). Fig. 3(a) corresponds to a 1-subcritical, 2-supercritical regime
(1
2
ooo1), while Fig. 3(b) corresponds to a 1-supercritical, 2-supercritical regime (o41). We see that the

difference between the first- and the second-order solutions is important but not dramatic in the case of
Fig. 3(a), where the supercritical terms are present in the second-order solution only; much larger differences
between the first- and second-order TDP motions appear in Fig. 3(b), where the supercritical terms are pre-
sent at both orders. Here the effects of the second-order terms are dominant, even for that relatively small
value of e.

By the expressions reported in Appendix A we see that there could be resonances for 1
2
ooo1 iff DðoÞ ¼ 0,

and there could be resonances for o41 iff DAðoÞ ¼ 0 or DBðoÞ ¼ 0. As these equations have no solutions in
those ranges, we reiterate the same conclusion obtained for the first-order terms, namely, the presence of
traveling waves in the supercritical regimes eliminates the ideal resonances.

In order to further illustrate the effect of the second-order terms in the asymptotic solution, in Fig. 4 we
show the profiles of the solution uðx; tÞ through zero-, first- and second-order in e at four different times,
corresponding to ot1 ¼ 0, ot2 ¼ p=4, ot3 ¼ p=2 and ot4 ¼ 3p=4. Figs. 4(a) and (b) show the first- and the
second-order solutions respectively, for o ¼ 0:9, c0 ¼ 1:9 and e ¼ 0:1. Here, the first-order solution is in the
subcritical regime while the second-order solution is in the supercritical regime. We observe second-order
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waves propagating towards infinity, and the difference between the first- and the second-order solutions is
large, even at this small value of e.

Figs. 4(c) and (d) show the first- and the second-order solutions for o ¼ 3, c0 ¼ 3 and e ¼ 0:06. Here,
both the first and the second-order solutions are in the supercritical regime, giving origin to first- and
second-order propagating waves. These waves propagate with different velocity (see Eq. (57)), so that
there is an interaction, which is clearly visible in Fig. 4(d), and which further shows the importance of the
second-order terms.
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4.1. Second-order shift and second-order amplification factors

An important property of the second-order solution is that cðtÞ now oscillates about an average position
which is shifted with respect to the static TDP c0. This shift, which was not present in the first-order solution,
is given by the coefficient b20 and is shown in Fig. 5 for three different values of c0. Note that b20 has the same
resonances of the first-order solution, and that it tends to a constant value for o!1.

At the second order in e, we have g2 ¼ jb22j in the subcritical case, and g2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
22 þ b2

22

q
in the supercritical

case. The second-order amplification factor D02 is therefore given by

D02ðU0;oÞ ¼
jb22j

U0
(58)

in the 2-subcritical case and by

D02ðU0;oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
22 þ b2

22

q
U0

(59)

in the 2-supercritical case (see Appendix A for the expressions of a22 and b22).
In Fig. 6 we show the second-order amplification factors D2 and D01 þ eD02 as functions of o for the same

three values of c0 of Figs. 2 and 5. For the sake of comparison, also the first-order amplification factor
D01 ¼ D1 is reported.

The first important aspect highlighted in Fig. 6 is the confirmation of the occurrence, in the range oo1
2, of

superharmonic resonances which are added, at the second-order, to the primary first-order resonances. The
superharmonic resonances, being of ‘‘secondary’’ type, are sometimes less pronounced than the primary ones.
In fact, one is clearly visible at o ’ 0:45 in Fig. 6(c), another one at o ’ 0:37 in Fig. 6(b), while other
resonances result in only very small peaks, which can be missed at a first glance (see in particular at o ’ 0:49
in Fig. 6(a)).

In the range o41 the second-order terms increase the amplitude of the first-order peaks, confirming how
they can effectively be associated to a resonant-like (damped) behaviour.

Confirming in a systematic way the anticipation of the previous section, we see from Figs. 3–6 that the
second-order terms are
(i)
 important for 0ooo1
2
(1-subcritical and 2-subcritical regime). In this regime they highlight the presence

of superharmonic resonances, not evidenced by the first-order solution. Far from the secondary
0

100

3.00.0

b 2
0/

U
0

c0=3

c0=9

c0=3
c0=1.4

ω

Fig. 5. Second-order shift b20 for three different values of c0.
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resonance, however, the second-order terms quantitatively do not add important contributions to the
first-order solution;
(ii)
 very important for 1
2
ooo1 (1-subcritical and 2-supercritical regime). Here they contribute in non-

negligible manner to the TDP motion even far from the resonances. Furthermore, far from the TDP they
represent the dominant part of the cable dynamics;
(iii)
 fundamental for 1oo (1-supercritical and 2-supercritical regime), where linear terms completely miss the
TDP response of the system. This importance is c0 dependent, and becomes dramatic for large values of c0
(see in particular Fig. 6(c) and note that it has a different vertical scale). In contrast, in this regime the
influence on the cable dynamics is relevant but less important than in the previous case.
The effect of the other governing parameter c0 is also remarkable. In particular, the second-order terms
become more and more important for large values of c0; in the case of Fig. 6(c), for example, the differences
between first- and second-order solutions are so marked that even the second-order solution is no longer
accurate for that value of e. The differences are important also in the case of Fig. 6(b).

A surprising result is seen in Fig. 6: the second-order amplification factors increase, on average, with the
frequency as o becomes larger than 1. This fact, which is in agreement with the numerical results for the beam
equation presented in Ref. [3], calls for a different asymptotic solution for large values of o, where 1=o should
be the appropriate smallness parameter. This issue, however, is out of the scopes of the present paper an will
be left for future work.
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As far as the comparison between different second-order amplification factors is concerned, we note that
both D2 and D01 þ eD02 share the same qualitative behaviour, and they differ for an almost constant value.
Thus, both are reliable measures of the second-order effects in the system dynamics.
5. Numerical results and comparisons

In this section we show some preliminary numerical simulations of our model equations, which we have
produced by using a straightforward finite difference algorithm. The aim of these simulations is limited to the
validation of our approximate analytical solution; in order to perform more systematic simulations, several
issues concerning the numerics need further study. In particular, the problem of imposing the boundary
conditions at the infinite end of the domain is very difficult, and in the simulations presented here the time
evolution is simply stopped as the propagating waves reach the cutoff boundary, taken sufficiently large.
The detailed study of this and other issues concerning the numerical solution of the equations is left for
future work.

In Fig. 7 we show the time evolution of the solution uðx; tÞ, for 0pxp150 at four different times, (a) t ¼ 50,
(b) t ¼ 100, (c) t ¼ 150 and (d) t ¼ 200, for o ¼ 1:2, which sets the system in the 1-supercritical regime. The
initial condition used here is uðx; 0Þ ¼ uSðxÞ with qu=qtðx; 0Þ ¼ 0, that is we initialize the system at the static
profile with no initial velocity. We also have c0 ¼ 1:4 and e ¼ 0:1. We see clearly a large amplitude wave which
propagates towards infinity, as predicted by our theoretical analysis.

In Figs. 8(a) and (b), we look at the motion of the TDP over one period, by comparing the first- and second-
order analytical expressions with the numerical results. Fig. 8(a) refers to the 1-subcritical, 2-supercritical
regime (we have chosen o ¼ 0:7 for this case) while Fig. 8(b) refers to the 1-supercritical, 2-supercritical regime
(here we have o ¼ 1:2). In both cases, we have c0 ¼ 1:4, while e ¼ 0:4 in Fig. 8(a) and e ¼ 0:1 in Fig. 8(b). We
note the difference between the first- and the second-order asymptotic approximations in both cases, which
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demonstrates the importance of the second-order analysis. Also, we see that the second-order analytical
solution reproduces the numerical results very well, even for the rather large value of e chosen in Fig. 8(a).

6. Conclusions and outlook

This work is a continuation of our study of the nonlinear dynamics of semi-infinite cables resting on a
unilateral elastic substrate by means of a straightforward perturbative approach. We have investigated
periodic solutions around the static profile.

At each order in our perturbation scheme, two different regimes have been identified, one below (called
subcritical) and one above (called supercritical) a certain critical excitation frequency (called cutoff frequency).
In the latter, energy is lost by radiation at infinity, while in the former this phenomenon does not occur. On the
contrary, in the subcritical regime various resonances are observed; their number depends on the static
configuration around which the system performs nonlinear oscillations and they are absent, or better, less
pronounced in the supercritical regime, due to the dissipation by radiation. The cutoff frequency on at the n-th
order is given by on ¼ 1=n. Therefore, for any value of the frequency of the forcing oscillation, there will be a
supercritical regime at some order in the perturbation expansion. That is to say, waves will always propagate
towards infinity, with smaller and smaller amplitude as o! 0.

The first-order solution gives the linear response of the system to the external excitation, while nonlinear
effects start appearing at the second order and higher. In particular, the appearance of superharmonic
resonances has been highlighted. The results are illustrated both by showing the spatial shape of the excitation
and by the amplification factor D, which better summarizes the main features of the solution.

It should be remarked that the perturbative approach proposed in this work can only catch certain
nonlinear phenomena, while others, such as the bending of the resonance curves near resonant frequencies and
hysteresis cycles, need a different asymptotic analysis. In order to describe these effects, a detuning parameter
should be introduced near the resonant frequencies and a multiple-scale analysis should be performed. Some
aspects of the solution, like the increasing of the second-order amplification factor with the excitation
frequency o for o41, indicate that the problem might be a singular perturbation problem. For a fixed
frequency o and away from resonances, however, we believe that this is not the case; the convergence with
respect to e is non-uniform only when the limits e! 0 and o!1 are considered simultaneously.

To assess the validity of our asymptotic analytical approach, a comparison with some numerical simulations
has been performed, both in terms of the TDP motion and of the beam motion. Both 1-supercritical and
1-subcritical cases are considered, and it is shown that the analytical solutions are in very good agreement with
the numerical simulations.

Among many others, at least one development of the present paper is worthy and left for future works. It is
the determination of the range of stability of the considered periodic solution, which has both practical
and theoretical interest, as the eigenvalues behaviour is expected to be influenced by the unboundedness
of the domain.
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Appendix A. Second-order coefficients

We report here the explicit expressions for the second-order coefficients a22, b22 and b20 of the TDP motion

cðtÞ ¼ c0 þ e½a11 sinðotÞ þ b11 cosðotÞ� þ e2½b20 þ a22 sinð2otÞ þ b22 cosð2otÞ� þ . . . (the first-order coefficients

are given by Eqs. (41) and (44)). We recall that c0 and U0 are related by c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2U0

p
� 1. In the following,

we use the definitions n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jo2 � 1j

p
and m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j4o2 � 1j

p
.

1-subcritical and 2-subcritical regimes: oo1
2

a22 ¼ 0, (A.1)

b22 ¼ B1ðoÞa11 þ B2ðoÞa2
11, (A.2)

b20 ¼ B3ðoÞa11 þ B4ðoÞa2
11, (A.3)

with

B1ðoÞ ¼
U0o2 cotð2oc0Þ cscðoc0Þ

mþ 2o cotð2oc0Þ
, (A.4)

B2ðoÞ ¼
�1� mþ 2mn� o cosð2oc0Þ cscðoc0Þð2o cscðoc0Þ þ secðoc0ÞÞ

4ðmþ 2o cotð2oc0ÞÞ
, (A.5)

B3ðoÞ ¼ �
U0o cscðoc0Þc0

2U0 þ c20
, (A.6)

B4ðoÞ ¼
U0o

2U0 þ c20
cotðoc0Þ þ

ð1þ 2U0o2Þc0

2ð2U0 þ c20Þ
�

o2c30
2ð2U0 þ c20Þ

,

�
oð2noþ ð1þ nÞ cotðoc0ÞÞc

2
0

2ð1þ nÞð2U0 þ c20Þ
. (A.7)

1-subcritical and 2-supercritical regimes: 1
2
ooo1

a22 ¼ A1ðoÞa11 þ A2ðoÞa2
11, (A.8)

b22 ¼ B1ðoÞa11 þ B2ðoÞa2
11, (A.9)

with

A1ðoÞ ¼ �2U0mo2 cosðoc0Þ cosð2oc0ÞNAðoÞ, (A.10)

A2ðoÞ ¼ m cosðoc0Þðð1þ o2Þ cosðoc0Þ � n2 cosð3oc0Þ

þ noðsinðoc0Þ þ sinð3oc0ÞÞÞNAðoÞ (A.11)

and

B1ðoÞ ¼
U0o3 cscðoc0Þ

DðoÞ
, (A.12)

B2ðoÞ ¼ ð�o cosð2oc0Þ � 2o3cos2ð2oc0Þcsc
2ðoc0Þ

þ ð1
2
� n� 2o2 þ 4no2Þ sinð2oc0Þ

� 1
2
o2 cscð2oc0ÞÞ sinð2oc0ÞNBðoÞ, (A.13)

with

DðoÞ ¼ 8o2 � 1þ cosð4oc0Þ, (A.14)
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NAðoÞ ¼
c20

ðc0 �U0ÞDðoÞ
, (A.15)

NBðoÞ ¼
sinð2oc0Þ

ðc0 �U0ÞDðoÞ
. (A.16)

The second-order shift coefficient b20 has the same expression as in the 1-subcritical and 2-subcritical regimes

for oo1 (see Eqs. (A.3), (A.6) and (A.7)).
1-supercritical and 2-supercritical regime: o41

a22 ¼
A1ðoÞa11 þ A2ðoÞb11 þ A3ðoÞa2

11 þ A4ðoÞb
2
11 þ A5ðoÞa11b11

DAðoÞ
, (A.17)

b22 ¼
B1ðoÞa11 þ B2ðoÞb11 þ B3ðoÞa2

11 þ B4ðoÞb
2
11 þ B5ðoÞa11b11

DBðoÞ
, (A.18)

b20 ¼
B6ðoÞa11 þ B7ðoÞa2

11 þ B8ðoÞb
2
11

2ð2U0 þ c20Þ
, (A.19)

with

DAðoÞ ¼ 4U2
0o

2 cotð2oc0Þ cscðoc0Þ
2 sinð4oc0Þ

þ 4ð2m2 �U0o2 cotð2oc0Þ cscðoc0Þ
2 sinð4oc0ÞÞc

2
0,

þ o2 cotð2oc0Þ cscðoc0Þ
2 sinð4oc0Þc

4
0, (A.20)

A1ðoÞ ¼ �2U0mo2ð1þ 2 cosðoc0ÞÞ sec
oc0

2

� �2
secðoc0Þc

2
0, (A.21)

A2ðoÞ ¼ �2U0o3 cosð2oc0Þ
2 cscðoc0Þ

3c0ð2U0 � c20Þ, (A.22)

A3ðoÞ ¼ 2mc0 2U0o 3 cotð2oc0Þ þ o 2þ sec
oc0

2

� �2
secðoc0Þ

� �� ��
� o 3 cotð2oc0Þ þ o 2þ sec

oc0

2

� �2
secðoc0Þ

� �� �
c20 þ c0 3þ 4n �mþ nð Þ þ 4o tanðoc0Þð Þ

�
, (A.23)

A4ðoÞ ¼ 4mc0ð2U0oðo cotðoc0Þ
2
� cotð2oc0ÞÞ

þ c0ð�1þ 2ðm� nÞnþ 2o cotð2oc0Þ

þ oð�ðo cotðoc0Þ
2
Þ þ cotð2oc0ÞÞc0ÞÞ, (A.24)

A5ðoÞ ¼ 2U2
0o

3 cosð2oc0Þð3� 2 cosðoc0Þ þ cosð4oc0ÞÞ cscðoc0Þ
3 secðoc0Þ

þ 4U0o cotð2oc0Þð�2þ 4ðm� nÞnþ 2o cotðoc0Þ � 2o sinð2oc0ÞÞc0

þ ð4m2 þ 2U0o3 cosð2oc0Þ cscðoc0Þ
3
ð2� ð3þ cosð4oc0ÞÞ secðoc0ÞÞÞc

2
0

� 4o cotð2oc0Þð�1þ 2ðm� nÞnþ o cotðoc0Þ � o sinð2oc0ÞÞc
3
0

þ o3ð3� 2 cosðoc0Þ þ cosð4oc0ÞÞ cotð2oc0Þ cscðoc0Þ
2c40, (A.25)

DBðoÞ ¼ �64m2c20 � 8o2 cotð2oc0Þ cscðoc0Þ
2 sinð4oc0Þð2U0 � c20Þ

2, (A.26)

B1ðoÞ ¼ 4U0o3ð1þ 2 cosðoc0ÞÞ cosð2oc0Þ csc
oc0

2

� �
sec

oc0

2

� �3
c0ð2U0 � c20Þ, (A.27)

B2ðoÞ ¼ �16U0mo2ðcosðoc0Þ þ cosð3oc0ÞÞ cscðoc0Þ
2c20, (A.28)
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B3ðoÞ ¼ 48m2c20 þ o cscðoc0Þ
2 sinð4oc0Þð2U0 � c20Þ �8U0o2 1þ 2 cscð2oc0Þ tan

oc0

2

� �� ��
þ4o2c20 1þ 2 cscð2oc0Þ tan

oc0

2

� �� �
� 2c0ð3þ 4nð�mþ nÞ þ 4o tanðoc0ÞÞ

�
, (A.29)

B4ðoÞ ¼ � 32m2c20 þ 4o cscðoc0Þ
2 sinð4oc0Þð2U0 � c20Þð�2U0o2 cotðoc0Þ

2

þ c0ð1þ 2nð�mþ nÞ � 2o cotð2oc0Þ þ o2 cotðoc0Þ
2c0ÞÞ, (A.30)

B5ðoÞ ¼ 4mc0ð�2U0o cscðoc0Þ
2
ð4o cosðoc0Þ � 2oð3þ cosð4oc0ÞÞ þ sinð4oc0ÞÞ

þ 8ð�1þ 2ðm� nÞnþ o cotðoc0Þ � o sinð2oc0ÞÞc0

þ o cscðoc0Þ
2
ð4o cosðoc0Þ � 2oð3þ cosð4oc0ÞÞ þ sinð4oc0ÞÞc

2
0Þ (A.31)

and

B6ðoÞ ¼ �2U0oc0 tan
oc0

2

� �
, (A.32)

B7ðoÞ ¼ o2c0ð2U0 � c20Þ � oð2U0 � c20Þ tan
oc0

2

� �
þ c20ð1� n2Þ, (A.33)

B8ðoÞ ¼ oð2U0 � c20Þ cotðoc0Þ þ ð1þ 2U0o2Þc0 � ð2n2 þ o2c0Þc
2
0. (A.34)
References

[1] M. Callegari, C.B. Carini, S. Lenci, E. Torselletti, L. Vitali, Dynamic models of marine pipelines for installation in deep and ultra-

deep waters: analytical and numerical approaches, Proceedings of AIMETA03, Ferrara, 9–12 September 2003, CD-rom.

[2] L. Demeio, S. Lenci, Forced nonlinear oscillations of semi-infinite cables and beams resting on a unilateral elastic substrate, Nonlinear

Dynamics 49 (2007) 203–215.

[3] G. Lancioni, S. Lenci, Forced nonlinear oscillations of a semi-infinite beam resting on a unilateral elastic soil: analytical and

numerical solutions, ASME Journal of Computational Nonlinear Dynamics 2 (2007) 155–166.

[4] P.Y. Couliard, R.S. Langley, Nonlinear dynamics of deep-water moorings, Proceedings of OMAE’01, Rio de Janeiro, Brasil, 2001.

[5] J. Crank, Free and Moving Boundary Problems, Oxford University Press, Oxford, 1984.

[6] Y. Zhang, K.D. Murphy, Response of a finite beam in contact with a tensionless foundation under symmetric and asymmetric

loading, International Journal of Solids and Structures 41 (2004) 6745–6758.

[7] J.-H. Yin, Comparative Modeling Study of Reinforced Beam on Elastic Foundation, Journal of Geotechnical and Geoenviromental

Engineering 126 (2000) 265–271.

[8] N.C. Tsai, R.E. Westmann, Beams of tensionless foundation, ASCE Journal of Engineering Mechanics 93 (1967) 1–12.

[9] A.R.D. Silva, R.A.M. Silveira, R.A.M. Gonc-alves, Numerical methods for analysis of plates on tensionless elastic foundations,

International Journal of Solids and Structures 38 (2001) 2083–2100.

[10] D.M. Santee, P.B. Gonc-alves, Oscillations of a beam on a non-linear elastic foundation under periodic loads, Shock and Vibrations 13

(2006) 273–284.

[11] O.R. Jaiswal, R.N. Iyengar, Dynamic response of a beam on elastic foundation of finite depth under a moving force, Acta Mechanica

96 (1993) 67–83.

[12] D.H.Y. Yen, C.T. Sing, On the non-linear response of an elastic string to a moving load, International Journal of Non-Linear

Mechanics 5 (1970) 465–474.

[13] Y. Weitsman, On foundations that react in compression only, ASME Journal of Applied Mechanics 37 (1970) 1019–1030.

[14] Z. Celep, A. Malaika, M. Abu-Hussein, Forced vibrations of a beam on a tensionless foundation, Journal of Sound and Vibration 128

(1989) 235–246.

[15] I. Coks-un, The response of a finite beam on a tensionless Pasternak foundation subjected to a harmonic load, European Journal of

Mechanics A/Solids 22 (2003) 151–161.

[16] I. Coks-un, Non-linear vibrations of a beam resting of a tensionless winkler foundation, Journal of Sound and Vibration 236 (2000)

401–411.

[17] R.F. Fung, C.C. Chen, Free and forced vibration of a cantilever beam contacting with a rigid cylindrical foundation, Journal of Sound

and Vibration 202 (1997) 161–185.

[18] R. Toscano, Un problema dinamico per la piastra su suolo elastico unilaterale, in: G. Del Piero, F. Maceri (Eds.) Unilateral Problems

in Structural analysis, CISM Courses and Lectures no. 288, 1985, pp. 375–387 (in Italian).



ARTICLE IN PRESS
L. Demeio, S. Lenci / Journal of Sound and Vibration 315 (2008) 414–432432
[19] J. Choros, G.G. Adams, A steadily moving load on an elastic beam resting on a tensionless Winkler foundation, ASME Journal of

Applied Mechanics 46 (1979) 175–180.

[20] A.V. Metrikine, Steady state response of an infinite string on a non-linear visco-elastic foundation to moving point loads, Journal of

Sound and Vibration 272 (2004) 1033–1046.

[21] G.G. Adams, An elastic strip pressed against an elastic half plane by a steadily moving force, ASME Journal of Applied Mechanics 45

(1978) 9–94.

[22] S. Lenci, M. Callegari, Simple analytical models for the J-lay problem, Acta Mechanica 178 (2005) 23–39.

[23] A. Nayfeh, Perturbation Methods, Wiley/Interscience, New York, 1973.

[24] A. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics, Wiley/Interscience, New York, 1995.

[25] J.F. Doyle, Wave Propagation in Structures, Springer, Berlin, 1989.

[26] H. Kolsky, Stress Waves in Solids, Dover Publications, 1963.


	Second-order solutions for the dynamics of a semi-infinite �cable on a unilateral substrate
	Introduction
	The mathematical model and changes of coordinates
	Perturbative approach
	The amplification factor D
	Zero-order solution
	First-order solution

	Second-order solution
	Second-order shift and second-order amplification factors

	Numerical results and comparisons
	Conclusions and outlook
	Second-order coefficients
	References


